
In September 2020, by the tianmu lake institute of advanced energy storage technology and Siemens industry software (Shanghai) co., LTD., jointly organized, liyang deepwater technology consulting co., LTD., liyang city people's government, the zhongguancun science and technology industrial park, jiangsu, Yangtze river delta physics, institute of physics, Chinese Academy of Sciences research center, "science and technology of energy storage magazine co-host of the first session of the national advanced intelligent power battery manufacturing and design meeting in jiangsu liyang! Mr. Li Yongwei, General Manager of Jiangsu Weilan New Energy Battery Co., Ltd., gave a keynote speech on "Demand Forecast for Intelligent Manufacturing from the Development of Solid State Battery Industry".

Mr. Li Yongwei, General Manager of Jiangsu Welion New Energy Battery Co., Ltd. : Good afternoon, everyone. Just now Mr. Fang Zhigang introduced the supporting role of software informatization and intelligentization for battery industry, new energy vehicle industry and other industries. In this report, I will forecast the industry's demand for intelligent manufacturing from battery research and development, manufacturing and customer service, and share with you what kind of demand there will be. I will briefly share them from three aspects. The first part is to introduce the development prospects of each battery technology and industry, and what kind of problems they will face. Then, the second part will cover the solid state battery, including key materials, cell and module design and manufacture, and what problems we need to solve. The third aspect will introduce the requirements of technology and industrial development for intelligent manufacturing.
I think there are probably quite a few of us present here who have experienced the development of a lithium battery industry for nearly 20 years. Twenty years ago, this was a very small industry. In terms of battery energy density, nickel metal hydride batteries might be 50-70Wh/Kg. So later on from lithium manganate, lithium iron phosphate to ternary materials, high nickel ternary materials such a material system change. The industry has grown from billions to tens of billions to hundreds of billions, and will soon become a trillion-dollar industry, and may even have more room to grow. This industry will provide a lot of space for our entire advanced battery technology development and industry development. However, with the improvement of battery energy density, safety issues are becoming more and more prominent, especially in energy storage, power batteries and new energy vehicles. So how to solve this problem, solid state battery to improve the safety of the battery, and continuously improve the energy density of the battery provides a good technical solution. The most important is to replace some or all of the liquid electrolyte with a solid electrolyte, which can further improve its safety, increase energy density through the introduction of lithium metal anode, and achieve long life performance through other battery design and system matching. In the short term, liquid batteries can continuously improve the performance of batteries through material modification, chemical formation, system matching and structural design. But to ultimately address battery safety issues and achieve higher energy density levels, solid-state batteries can provide a better solution by providing a higher voltage range, suppressing lithium side reactions, and broadening the temperature window. In the medium to long term, there is a lot of room for solid-state battery development.
Throughout the world, China, South Korea and Japan are relatively in the leading position of research and development and industrial application in this field. At the same time, many companies in Europe and the United States have now begun to lay out and build core technologies. The technology competition of solid state battery is becoming more and more fierce, especially with the international large automobile companies in the full involvement in this field, this process will play a greater role in promoting the development of the solid state battery industry. From the current overall development of the industry, the development and change of solid state battery, whether polymer solid state battery, thin film solid state battery, or sulfide solid state battery and oxide solid state battery, there are still various problems, still need to be further solved. From the perspective of deepening, the energy density can reach above 350Wh/Kg, the safety performance can reach Eurocar level 2, fast charging, long life, low cost, wide temperature range, and there is still a lot of work to be done in terms of related technology development and corresponding process development and industrial application.

This is our prediction of where solid-state and liquid batteries will go. In the near term, there is room for 350Wh/Kg for liquid batteries. Over time, say 2022 or 2023, solid-liquid hybrid batteries will increase in energy density with different material systems. By 2025, all-solid-state batteries are expected to evolve from small consumer batteries to medium and large batteries, eventually reaching energy densities of 500-600Wh/Kg. For solid-state batteries, from the perspective of mass production, there are still some key technical and industrial problems that have not been well solved. This includes the key issues of basic science of interface, including material and cell structure efficiency issues, as well as the performance still need to be integrated optimization. At the same time, there is still no perfect industrial foundation to support the faster development of this industry. In order to achieve mass production, there is a lot of work to be done, from design, from development validation to mass production.
大概在2022年左右,隨著在消費電池領(lǐng)域已經(jīng)逐步導(dǎo)入和應(yīng)用混合固液電池,動力和儲能領(lǐng)域也將逐步導(dǎo)入固液混合電池。這里更多體現(xiàn)的是安全性上的快速提升。全固態(tài)電池也會按照這樣的路徑發(fā)展,預(yù)計2023年到2024年左右消費類電池會導(dǎo)入全固態(tài)電池,而動力和儲能領(lǐng)域會隨之跟進到產(chǎn)業(yè)化的程度。
要做好一個電池,實際上受到多個層面因素的影響,我想大家都有非常深刻的體會。首先,關(guān)鍵材料能不能為電池提供比較穩(wěn)定的性能,材料制備后能不能設(shè)計比較好的結(jié)構(gòu),把材料集成到電池里面。如何通過工業(yè)化的生產(chǎn)工藝來支撐。從材料發(fā)展來講,經(jīng)過這20多年,人們對材料已經(jīng)有比較深刻的認知。對于關(guān)鍵材料的性能,比如固態(tài)電解質(zhì),包括離子電導(dǎo)率,電子電導(dǎo)率,離子遷移數(shù),寬電化學(xué)窗口,熱穩(wěn)定性和化學(xué)穩(wěn)定性,以及抑制鋰枝晶生長所必需的良好的機械性能。

從制程來講,要控制比較低的雜質(zhì)含量,高度的一致性,一致性要通過全流程的過程質(zhì)量控制,從配料和加工到最后的質(zhì)量控制,整個流程要建立嚴格的過程質(zhì)量標準,以達到最后的控制標準,同時形成規(guī)?;偷统杀尽=?jīng)過2019和2020年的調(diào)整,整個動力電池行業(yè)已經(jīng)向著大規(guī)模高集成度的方向發(fā)展。固態(tài)電池的發(fā)展會經(jīng)過早期的低水平競爭,比較順利地進入規(guī)范發(fā)展的階段。各個體系的材料有對應(yīng)的要求,其中既有優(yōu)點也有缺點。固態(tài)電池不一定是單一的一種材料,它可能是幾種材料體系的復(fù)合,以達到性能要求。對于正負極活性材料,我們需要對材料的整體結(jié)構(gòu),和材料表面進行對應(yīng)的改性,設(shè)計電池和電極的結(jié)構(gòu)。
這是我們認為可以通過原位固態(tài)化這樣一個標準方法能夠?qū)崿F(xiàn)半固態(tài)和全國電池的制造的典型電極結(jié)構(gòu)。中間是隔膜或者固態(tài)電解質(zhì)層,和正負極構(gòu)成電極結(jié)構(gòu)。這是我們認為在當前固液混合階段里面,哪些工序會有一些新的變化。結(jié)合固液混合的特點,首先材料體系會有一些新的調(diào)整。剛才談到我對正負極的,對固態(tài)電解質(zhì)的,甚至對隔膜和固態(tài)電解質(zhì)膜的性能的改進,那么新材料導(dǎo)入之后,對分散、勻漿和極片制造的工藝就會產(chǎn)生新的變化。新引入的固態(tài)電解質(zhì)膜,也會跟以前的隔膜和涂層隔膜有很多不同。在化成階段里,如何通過原位聚合如引入電解液,如何實現(xiàn)原位固態(tài)化,這個新的工藝會提出新的挑戰(zhàn)。
衛(wèi)藍經(jīng)過兩三年的開發(fā),我們已經(jīng)實現(xiàn)了300Wh/Kg的電池,它能夠?qū)崿F(xiàn)比較好的循環(huán)性能,尤其是45℃高溫循環(huán)壽命能夠超過1000圈。同時,它可以在如此高的能量密度條件下,通過針刺測試。對于硫化物體系,它也有對應(yīng)的濕法和干法工藝,可以導(dǎo)入其他諸如烘干、壓片等工序。相比現(xiàn)在的工藝過程還會更復(fù)雜一些。如果采用干法工藝,那么固態(tài)電解質(zhì)層的導(dǎo)入及其加工工藝會更加復(fù)雜。新的工藝會不斷涌現(xiàn),工藝的開發(fā)和驗證還有比較多的工作去開展。
這是今年四月份報道的三星全固態(tài)電池,質(zhì)量能量密度達到400Wh/Kg,體積能量密度達到900Wh/L。這個電池從綜合指標來講,處于全球先進水平。但是這個產(chǎn)品涉及很多工藝問題,包括熱等靜壓技術(shù),干法制備電極技術(shù),壓縮轉(zhuǎn)印技術(shù)等相關(guān)技術(shù)適不適合大規(guī)模生產(chǎn),如何從實驗室走出來,這里還需要很多工藝方面的考慮,裝備的開發(fā)以及如何實現(xiàn)穩(wěn)定的,一致性較高的生產(chǎn)。對于聚合物電池,同樣也分為濕法和干法工藝兩種,這是大家能夠通過行業(yè)或者領(lǐng)域的進展能看得到的。
固態(tài)電池提供了比較好的前景,可以采用內(nèi)串聯(lián)結(jié)構(gòu)。這種結(jié)構(gòu)對電池從單體到模組的集成提供了更好的解決辦法。電芯結(jié)構(gòu)可以采用多層制備的方法,極片更加致密,對于體積能量密度會有比較大的提升。新的疊片工藝在未來的固態(tài)電池領(lǐng)域,會得到更大的應(yīng)用。為什么這么講呢,根據(jù)我們應(yīng)用的主要電極結(jié)構(gòu),在電池的充放電過程中,卷繞或疊片各有特點。大家會更深入地分析哪種結(jié)構(gòu)更適合高膨脹率的硅碳負極或者其他新負極的導(dǎo)入。
從電芯的包裝形式以及結(jié)構(gòu)來講,隨著固態(tài)電池技術(shù)的發(fā)展,也會有新的變化。由于固態(tài)電池可以提供更寬的工作溫度范圍,固態(tài)電池的安全設(shè)計要求會進一步簡化。對箱體以及對模組的效率呢也可以進一步提升。確實B公司和C公司在這方面做了很多很好的工作,如果固態(tài)電池按照這樣的方式去設(shè)計,我相信也會把能量密度進一步提高到更高的水平。我們做個簡單的測算,如果300Wh/Kg的電池采用CTP的形式成組,那么它的成組效率有可能達到75%。如果采用刀片電池結(jié)構(gòu),可能會達到80%以上。如果我們能夠簡化冷卻系統(tǒng),那么成組效率有可能達到85%以上。但這里面還有很多的開發(fā)和驗證工作。這是在成組工藝上,因為結(jié)構(gòu)的簡化和制程的簡化,那么有可能讓我們在模組成型這個工藝中得到流程簡化,進一步降低成本。

電池系統(tǒng)因為它的高集成度,對于未來的智能化管理和無線通訊,在模組方面也會得到更大范圍的應(yīng)用。那么我們下面來看一下,固態(tài)電池系統(tǒng)和產(chǎn)業(yè)發(fā)展對智能制造有什么樣的需求。前面我們也看到先進電池技術(shù)的發(fā)展,已經(jīng)把這個產(chǎn)業(yè)推進到千億級,很快會進入萬億的規(guī)模。那么固態(tài)電池的發(fā)展應(yīng)該在一個更高的起點上,全面地考慮這個產(chǎn)業(yè)如何去構(gòu)造。固態(tài)電池產(chǎn)業(yè)的發(fā)展應(yīng)該從上游原材料,甚至在上述電池材料的原材料,如何通過信息化,數(shù)字化,智能化來管控整個體系。材料的組織制程、MES導(dǎo)入和智能工廠已經(jīng)做起來了。在電池行業(yè),它應(yīng)該成為新建的動力工廠正在普遍應(yīng)用的技術(shù)。在業(yè)務(wù)端,如果我們把電池技術(shù)和相關(guān)的物料信息,生產(chǎn)制造信息,質(zhì)量信息,物流信息,能夠為下游的客戶形成很好的鏈接,對于下游客戶的支撐將發(fā)揮很好的作用。同樣,作為電池行業(yè),對于上游材料的要求,如果也能建立智能制造的生態(tài)系統(tǒng),那么對于這個行業(yè)發(fā)展會起到積極的推動作用。這里主要涉及原料和產(chǎn)品的制程,生產(chǎn)制造的質(zhì)量數(shù)據(jù),以及智能倉儲和物流。最終整合質(zhì)量管理、物料即時供應(yīng),實現(xiàn)高效的連續(xù)生產(chǎn),把敬意管理、全流程和降低成本跟整個生產(chǎn)流程結(jié)合起來。
固態(tài)電池也好,其他新型電池也好,在有了比較好的材料體系設(shè)計和結(jié)構(gòu)設(shè)計之后,要通過工藝把它做起來。那么每個工藝必須分析工藝目標,以及需要什么樣的工藝條件和什么樣的工藝裝備去支撐這個方面去發(fā)展。我們簡單舉幾個例子,比如說在固態(tài)電池領(lǐng)域,未來有可能應(yīng)用的,比如電極干法混料技術(shù)。對于這個工藝因素的分析,就需要在研發(fā)過程和開發(fā)過程里面去落實。比如干電極技術(shù),也可能導(dǎo)入進來。比如熱復(fù)合技術(shù),需要結(jié)合電池的制程,以及過程和最終的性能要去開發(fā)和落實。
未來能不能基于歷史數(shù)據(jù),通過機器學(xué)習(xí)、數(shù)字仿真和優(yōu)化,再加上策略控制系統(tǒng)把AI的相關(guān)技術(shù)跟整個生產(chǎn)和裝備比較好地結(jié)合起來,然后通過數(shù)字虛擬涂布機完成閉環(huán)的不斷優(yōu)化,最終的目標是實現(xiàn)我們在生產(chǎn)過程里面對單工序的智能化控制和智能化管理。這樣對單工序的PPK和智能制程能力會有大的提升。我在這里舉一個例子,這是衛(wèi)藍基于西門子的平臺與天目湖研究院合作打造了一個智能工廠的MES控制系統(tǒng)。這個系統(tǒng)和其他公司的系統(tǒng)有一些不同,除了正常的生產(chǎn)計劃、過程管理和質(zhì)量管理以外,它對安全管理,對能源消耗,對成本,對基于工廠層面的整個信息化管理也都明確地提出來了。包括我們剛才講到的單工序的智能化研發(fā),這個工作現(xiàn)在已經(jīng)啟動,有一些比較好的結(jié)果。
這是數(shù)字孿生的車間主要系統(tǒng),剛才方志剛先生已經(jīng)講過了,我就不做具體介紹了。那么從我們整體的研發(fā)體系以及未來的產(chǎn)業(yè)發(fā)展上,我們希望能夠從研發(fā)階段構(gòu)建以數(shù)字化為基礎(chǔ),讓實驗試制和數(shù)字化的模擬仿真比較好地結(jié)合起來。在制造環(huán)節(jié)輸出產(chǎn)品設(shè)計之后,能夠在制造環(huán)節(jié)通過MES和DTW與客戶的信息交互形成一個良性的互動。另外,站在整個行業(yè)的產(chǎn)業(yè)鏈和電池產(chǎn)品的全生命周期管理的角度,形成全閉環(huán)的產(chǎn)品信息的追溯和數(shù)字共享。在未來,隨著半固態(tài)電池和全固態(tài)電池的發(fā)展,我們相信會從目前的現(xiàn)有裝備占據(jù)80%左右,慢慢過渡到未來的大約80%的新技術(shù)和新工藝會導(dǎo)入固態(tài)電池產(chǎn)業(yè)。那么這個目標還需要數(shù)字化和智能化技術(shù)起到非常強的支撐作用。同時結(jié)合先進測試和失效分析技術(shù),最終達到下一代工業(yè)4.0鋰電池產(chǎn)業(yè)鏈的發(fā)展方向。未來我們會面向更高能量密度、更安全、更強的續(xù)航里程,更好地面向應(yīng)用場景去開發(fā)我們的工作。